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Abstract 

Cardiac arrhythmias constitute a major cause of morbidity and mortality in most settings of the 

world, and early identification of arrhythmias is paramount in efficient treatment and enhanced 

patient care. The widely used traditional electrocardiogram (ECG) interpretation, though clinically 

useful, is also subject to dysfunctionality in the form of its subjectivity of interpretation and lack 

of sensitivity to finer entrances of abnormalities. In the proposed study, a hybrid of a Feedforward 

Neural Network and Deep Neural Network (FNN and DNN) architecture system is proposed to 

significantly improve the early diagnosis of cardiac arrhythmia with structured clinical data 

contained in a publicly accessible Heart Disease Dataset. The suggested scheme leverages the 

effectiveness of FNN in handling structured attributes, combined with the ability of DNN to model 

multilateral and complex intricacies in characteristics, thereby facilitating the complete 

representation of the characteristics. The hyperparameter tuning and regularization were 

performed on the structure of the hybrid architecture, resulting in optimization, and accuracy, 

precision, recall, F1-score, and AUC-ROC leading metrics were adopted. Experimental outcomes 

reflected that the accuracy of 84.8% was as good as the standalone FNN and DNN models, 

displaying a balance in the performance of all the considered metrics. Analysis of the confusion 

matrix has shown a high level of classification reliability with no notable bias over one of the 

classes. The ultimate contribution that can be made using the study is a computationally efficient 

and generalizable hybrid model, which can be incorporated into the clinical workflow and 

electronic health records (EHR) systems. The modular nature of its design contributes to future 
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extension, such as the analysis of the raw ECG signals and explainable AI. The results show that 

the hybrid FNNDNN holds promise as a scalable, easily interpretable, and accurate device to 

proactively detect arrhythmia, allowing for more accurate care and cardiovascular diagnostic 

outcomes. 

Keywords: Healthcare, Cardiac arrhythmia, Early detection, Deep learning 

 

Introduction 

Cardiovascular diseases remain the major cause of death around the globe and claim millions of 

lives every year, causing a massive burden on the economy and society. Cardiac arrhythmias, 

among them, are a very serious problem because they cannot be predicted, exhibit unlimited 

symptoms, and may cause such severe consequences as stroke, heart failure, and unexplained 

blockage[1]. The severe nature of many arrhythmic diseases makes detection at an early stage 

challenging, but it is in the initial steps where treatment can make a maximum impact on prognosis, 

number of hospitalizations, and long-term expenses allocated towards health care. Digital health 

monitoring and widespread usage of biomedical sensors have poured a lot of cardiac data into the 

pool, and the possibilities of embracing such data in data-driven methodology have provided an 

opportunity never seen before in the sphere of cardiac diagnosis in terms of effectiveness and 

promptness[2]. 

A regular electrocardiogram analysis (ECG) exercise is the standard of care in the determination 

of arrhythmias. Nevertheless, there are a number of limitations associated with its diagnostic 

capability. Primary among these are the findings that require skilled interpretation, which may add 

subjectivity and variation between practitioners and clinical sites. Furthermore, temporary or 

minor anomalies could not be detected even at regular observation, especially in asymptomatic 

patients or those whose arrhythmias are random. It is in the context of these challenges that 

computational approaches can identify intricate patterns in cardiac activity that may not be 

observed by human factors and, therefore, inform proactive and preventive interventional 

measures[3]. 

In the last 10 years, machine learning and deep learning have transformed automated ECG 

interpretation because of artificial intelligence. Such neural network structures as deep neural 

networks (DNNs), convolutional neural networks (CNNs), feedforward neural networks (FNNs), 

and recurrent neural networks (RNNs) have been proven successful in feature extraction and 

classification to detect cardiac arrhythmia. More specifically, deep learning can be characterized 

by the fact that it enables the learning of hierarchical feature representations from raw or sparsely 

processed data, which decreases the need to manually engineer features. Nevertheless, despite 

these advantages, the barriers to mass clinical implementation include the following obstacles to 

deep learning models. These are low interpretability, the danger of overfitting, heavy use of a large, 

quality-labeled dataset, computational requirements, which can go beyond what a substantial 

number of healthcare facilities can provide, and the limitation of deploying these systems into the 

current healthcare diagnostic practices[4][5]. 

Recent literature marks the hybrid architectures as one of the promising answers to these 

challenges. Their hybrid nature makes it possible to utilize the complementary strengths of 

different architectures, and hence can result in better feature representation and analysis paradigms 

that hybrid models bring. As an example, introducing FNNs, which are good at working with 

structured tabular data, into the DNNs, which are well-suited at modeling complex and nonlinear 
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relationships, could yield models that would be both strong and versatile. A balance between 

accuracy and interpretability is another matter of importance with respect to clinical acceptance 

that hybridization can provide. Moreover, due to the growing popularity of wearable cardiac 

monitoring devices and remote patient management systems, the models, which will be able to 

function in real-time settings and preserve a level of diagnostic accuracy, are also on the rise in 

demand[6]. 

The suggested framework is based on these ideas and offers a hybrid of FNN and DNN 

implementation that can specifically be used to detect cardiac arrhythmias in their early stages. 

This model is prepared to meet a number of urgent requirements in the new environment: handling 

of heterogeneous clinical and physiological data, resistance to noise and population variability, 

and accuracy both in batch and real-time diagnostic practice. A robust data processing pipeline 

will accommodate the exposure variables (also both categorical and continuous clinical data) to be 

handled: standardized, encoded, and prepped to feed into the models. The system is designed to 

emphasize only clinically meaningful features (e.g., demographic characteristics, lifestyle 

indicators, past medical history, and physiological measures) to be consistent with diagnostic 

guidelines, making use of the feature extraction capability inherent in the deep learning model that 

allows it to identify subtle, as yet previously unknown, relationships[7]. 

Within the existing continuum of biomedical AI research, this study can be incorporated into the 

path toward diagnostic tools that can not only work in carefully optimized experiments but can 

also be implemented in our practical lives. Hybrid models, as have been recently featured in a 

number of very high-impact studies, can help reduce the overfitting inclinations of very deep 

architectures, increase generalizability across a wider range of data, and make more robust 

predictions when presented with imperfect data[8]. This architecture is also modular, which 

enables it to be further integrated with other deep neural net modules, e.g., convolutional layers to 

process raw ECG signals or attention modules to model sequences, or even explainable AI methods 

so that the clinicians can have greater visibility and trust in the predictions. 

This study fits in the overall goal of developing a field of early, accurate, and interpretable 

cardiovascular diagnostics by eliminating the shortcomings of classic arrhythmia detection and 

single-architecture AI. The offered hybrid FNN-DNN system is one of the steps to the 

development of a viable compromise between predictive accuracy, hardware computational 

demand, and clinical applicability of the prediction model, which are the three foundations of a 

sustainable introduction of AI into clinical cardiovascular practice[9]. With this, it establishes the 

foundation of the future research in the concept of an adaptive, personalized system of diagnosis, 

which may be developing in tandem with the technologies and increasing volumes of data being 

generated, and overall lead to better patient outcomes and effective administration of healthcare. 

 

Literature Review  

Heart disease, especially cardiac arrhythmia, has been a popular object of computational healthcare 

research since the conditions are rather common and may cause serious complications that cannot 

be easily eliminated without their timely diagnosis and treatment. The task of arrhythmia detection 

on electrocardiographic signals is a well-explored one, where studies have shifted and advanced 

to employing artificial intelligence methods by use of advanced systems. In early research, manual 

feature engineering was characteristically used where a domain expert preselected parameter; QRS 

duration, P-wave morphology, and RR interval variability were extracted to classify them with 
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classic algorithms, such as k-nearest neighbors (KNN), decision trees, and support vector machines 

(SVM). Although these kinds of methods saw moderate success, they were not scalable and 

flexible to a range of signals that can be received and a variety of patients to whom they are applied 

due to their handcrafted features[10], [11]. 

The emergence of deep learning has substantially changed this situation by making it mechanically 

feasible to record complex patterns even in the functions of the raw or minimally processed 

variants of the ECG signal. In the detection of arrhythmias, the application of Convolutional 

Neural Networks (CNNs) as known for their ability to identify spatial patterns within ECG wave 

shapes, has become very popular. Recent research has shown an unprecedented degree of 

accuracy, where models like 2D-CNNs are capable of classifying controlled data with accuracy 

rates of greater than 99 percent. Indicatively, Shi et al. were able to show the effectiveness of 

knowledge-assisted synthetic augmentation with CNN-based frameworks that greatly improved 

the performance of underrepresented classes of arrhythmia. In the same way, deep learning models 

using transformers have been suggested to perform tasks such as sequence-to-label classification 

in ECG analysis, with reasonable levels of competition and better robustness as well. In spite of 

such achievements, CNN-based approaches have significant limitations. They are prone to high 

quality and large amounts of annotated data, and their computational requirements do not allow 

their implementation in such low-resource environments as wearable devices. In addition, they are 

black boxes in nature, which brings forth interpretability issues, which is a fatal flaw in clinical 

use. It has spurred the development of increased interest in architectures able to trade off the 

predictive power of deep learning with the flexibility and transparency of more traditional neural 

network architectures[12], [13]. 

FNNs are simpler, but sufficiently applicable to structured tabular types of data, like demographic 

data, lab results, and medical history, which can also serve to complement ECG data in the 

diagnosis of arrhythmia. FNNs have the strength of working with blended data and have a more 

interpretable framework. Nevertheless, alone, they might not offer the representational richness 

needed to cue the actual temporal and morphological modulations of the ECG signals. The hybrid: 

There has also been a promising research direction that arises in the way of helping to overcome 

these weaknesses, namely, hybrid models where observers form multiple neural structures are 

combined. It has also been demonstrated that FNNs have complementary capabilities with CNNs, 

LSTMs, or DNNs, which could be used to realize deeper feature representation along with 

flexibility to various data modalities. Ahamed et al. suggested a hybrid of classic machine learning 

and deep learning to classify a heartbeat, demonstrating enhanced stability on datasets 

(imbalanced). Bhattacharyya et al. used an SVM and a random forest algorithm to develop an 

ensemble machine, where they noticed high precision and recall in the multi-class experiment of 

detecting arrhythmia. These strategies stress the worthiness of Inhomogeneity in architecture to 

enhance generalization in the diversified patient groups and documentation of conditions[14]. 

Other more recent studies have further highlighted the need to merge arrhythmia detection systems 

with real-time monitoring systems, as well as the Internet of Medical Things (IoMT) systems. As 

an example, experimentation with wearable-mounted ECG monitoring systems driven by light-

weight neural models has been suggested to achieve a continuous detection of arrhythmias in low-

latency, providing a significant benefit to the high-risk patient cohort. Nonetheless, there is still a 

big challenge in creating models that work under limited computational and energy costs yet are 

still quite accurate. Moreover, about increasing trust and acceptability to clinicians and regulatory 
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authorization of deep learning in cardiology, interpretability frameworks (i.e., SHAP (Shapley 

Additive Explanations) and LIME (Local Interpretable Model-agnostic Explanations) are also 

being implemented into deep learning models[7], [15]. In this dynamic research environment, the 

hybrid FNNDNN has a strategic potential. Combining the classifiable, structured learning powers 

of FNNs with the feature hierarchy representation powers of DNNs, such a framework can analyze 

both table-structured clinical data and multidimensional non-linear relations without having to rely 

only on high-resolution ECG waveform data. This places it in a good position to be used in several 

healthcare services, such as environments that have minimal access to health services with a 

continuous ECG monitoring system. Future integration with CNN or attention-based modules into 

the hybrid design may also be implemented due to its modularity, therefore, opening the possibility 

of an integration of a unified derivation system capable of processing multimodal cardiovascular 

information in the form of raw ECGs[16], [17]. 

Publications in the past two years have supported this value in the context of the clinical feasibility 

of arrhythmia detection AI by high-impact studies. The optimization of a decision tree using 

adaptive boosting by Kumari and Sai featured almost flawless classification accuracy in 

recognition tasks on ECGs; the price of it is, however, an inappropriate degree of complexity to 

be used in every situation of deployment. On the same note, transformer-based ECG models have 

indicated better generalization, whereas they continue to have limitations in computational 

efficiency in real-time applications. The recent literature trend suggests the shift toward such 

systems that could address the performance divide between high-complexity research models and 

the realities of actually working within the clinical scenario, where accuracy is not the only metric 

that counts due to the importance of interpretability, flexibility, and potential integrability. The 

literature indicates that there is a notable advance to more advanced, combined, and clinically 

applicable AI models of arrhythmia detection[18]. As has already been mentioned, single-

architecture deep learning models have delivered a remarkable set of benchmark performances, 

but hybridizing FNNs and DNNs seems to hold an interesting route out of the maze of accuracy-

interpretability-adaptability, as shown in Table 1. This is a strategy that supports the greater goal 

of contextualizing AI efforts into practical cardiology, where the availability of data in a variety 

of forms, varying resource limitations, and the need to win the confidence of clinicians must all 

have to be addressed simultaneously. 

 

Table 1. An analysis comparing several reviews of the literature 

Ref Techniques Accuracy % Recall      

% 

Precision 

% 

F1 Score % 

[19]  AOC CapsNet. 93.1 90.3 92 91.9 
[20]  CNN framework. N/A N/A N/A N/A 
[21] Ensemble of KNN, 

DT, ANN, SVM, 

and LSTM 

97.66 N/A N/A  96.99 

[22] 2-D CNN 99.11 N/A 98.58 98 
[23] Five hybrid CNN 

models. 

DVAE-

CNN:62.8, 

DVAE-

N/A N/A N/A 
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CDAE-

CNN:53.91 
[24] Ensemble SVM and 

random forest. 

98.21 N/A N/A 96.4 

[25] CNN 97 N/A N/A N/A 

 

Methodology 

The given methodology will aid in creating and testing the hybrid Feedforward Neural Network 

Deep Neural Network (FNN DNN) architecture on the data that is clinically relevant in the early 

detection of cardiac arrhythmias. The framework adheres to a well-defined pipeline that includes 

acquiring a dataset, pre-processing it, feature engineering, constructing a model, training it and 

evaluating the model to make it fall in line with the aims of high precision and robustness and 

possible integration into clinical practice. The chosen experimental work starts with a selection of 

the Heart Disease Dataset, a repository presented by Kaggle that is publicly accessible and widely 

used, having a well-balanced set of categorical and numerical characteristics. The variables 

presented in the dataset are divided into demographic variables like age and sex, physiological 

variables like blood pressure levels and cholesterol levels, and the maximum heart rate attained, 

and others, like lifestyle and clinical variables like smoking habits, fasting levels of blood sugar, 

exercise-induced angina, and thalassemia type. All features are selected based on their reported 

applicability in cardiovascular risk factors and arrhythmia prediction to allow the model to 

combine conventional diagnostic indicators with their latent ones learned with the assistance of 

machine learning. 

Data preprocessing is one of the most important steps to make the data consistent, minimize the 

noise, and shape the data to make it ready to be ingested by neural networks. Any missing values 

are detected and filled with the help of proper imputation techniques, whereas categorical variables 

are coded in the form of one-hot or label encoding, depending on their type. Numerical attributes 

are normalized or standardized to bring variables on a similar scale, avoiding the scale of influence 

by a certain variable during the training of the model. When the needs are high, outlier detection 

methods will be used to counter the skewed learning problem by using abnormal data. The ready 

dataset is then divided into training, validation, and testing subsets; the process of stratified 

sampling is used to maintain the distribution of classes in all the subsets. The feature engineering 

has been added to boost the discriminative value of input variables. On top of the raw features, 

derived metrics, i.e., ratios, interaction terms, and clinically significant transformations, are 

calculated to give the model richer pictures of patients' health profiles. This step is intended to 

provide elusive relationships among variables that could be pre-indicators of arrhythmia events. 

The feature selection involves dimensionality reduction that minimizes the chances of overfitting 

risk, and it involves correlation procedures and ranking importance using forward and backward 

procedures generated by initial models. 

The structure based on both FNNs and DNNs will have synergistic properties, in that it will exploit 

the advantages that each type of network has to offer. The first layers have a structured 

Feedforward neural network architecture, which is best suited to structured tabular data and direct 

relations learning of features and target output. Such layers connect to a succeeding block of neural 

networks that can represent non-linear relationships between features. Activation functions, like 

ReLU, are used in hidden layers to add non-linearity, and regularization techniques, like dropout 
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and weight decay, are applied to curb overfitting. It has a batch normalization to stabilize the 

training and speed up convergence. The hyperparameters of the architecture (i.e. the number of 

layers, the number of neurons in each layer, the learning rate, the dropout rate) are optimized by 

complicated experimentation of the architectures based on grid search or Bayesian optimization 

methods. Training of models is performed through the methods of an optimization algorithm 

compatible with stochastic gradient descent, Adam, and RMSprop are considered to evaluate their 

effectiveness in deep learning training. The loss chosen is such that the nature of the task needs to 

be inducted, that is, in this case, the binary classification and often the binary cross-entropy is 

adopted, but other versions can be checked to test robustness. The early stopping rules are put in 

place to avoid excessive training after validation performance stops increasing, thereby cutting 

down on computation overheads and avoiding overfitting. Model performance is assessed on a 

held-out test set with a robust collection of measurements. Accuracy gives a rough estimate of the 

correctness of the classifications, precision and recall are measures of the correctness of the model 

when making predictions of positive cases and counting as many as the original true positives, 

respectively. Its harmonic means with these two, the F1-score, is a fair judge of the performance 

when the classes are imbalanced. The AUC under ROC is to assess the discrimination capacity of 

the model at different classification cutoffs. Such statistical measures as the Matthews correlation 

coefficient could be used to reveal a more detailed idea of the model's reliability. 

The framework is also scalable in an attempt to further confirm the suitability of the model in the 

clinic. The modular composition can enable incorporation with other elements of the neural 

network, e.g., convolutional layers to analyze raw ECG wave forms or recurrent layers to model 

temporal patterns. Also, the pipeline can be deployed on cloud-based systems, and with additional 

optimization, on edge computing devices, both enabling real-time monitoring applications in 

hospitals or wearable devices. This methodological rigor of this approach creates a situation where 

the output of this model is not only tested in the controlled experimental setting but also it can be 

customized to work within real-world environments of healthcare. A combination of structured 

clinical data processing, well-grounded feature engineering, and synergistic system architecture of 

a hybrid FNN-DNN model, the proposed method can form the framework of an early, accurate, 

and scalable detection of cardiac arrhythmias, which is said to contribute to the objective of 

alleviating the global prevalence of heart disease through early intervention. 
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Figure 1: The Proposed Technique (FNN+DNN) 

 

Results & Discussion 

Feedforward Neural Network (FNN) 

The progressive performance figures revealed in Figure 2 bring some light as to how the learning 

process of the Feedforward Neural Network (FNN) is going in classifying the cardiac arrhythmia 

cases of the preprocessed heart disease dataset. The plot shows two curves: the female of the 

training accuracy, that is, how the model gets the samples it has already seen the right class during 

training, and the validation accuracy, which is the measure of generalization on new data. The two 

curves also show an upward trend in the first epochs, which means that the network is indeed able 

to capture the patterns that can be used in classification, given the fact that the weights are being 

updated iteratively. One should pay specific attention to the closeness between the accuracy of 

training and validation curves, which implies that the model does not greatly overfit. Such 

matching means that the regularization techniques, including dropout layers, normalization, and 

early stopping, have effectively counteracted the inclination of deep models to over-fit training 

sets at the expense of generalization. The variation of validation accuracy across epochs is the 

common side effect of smaller validation batches and the stochastic optimization process. 

Methodologically, the consistent narrowing of the curves proves the efficacy of the selected 

architecture of the structured clinical data. It means that there is no significant gap between the 

two trajectories and that the FNN is learning features having true predictive capacity and not just 

training set-specific artifacts. In the medical context, this kind of stability is particularly important 

because overfitting may produce encouraging results, overly optimistic performance in the 

development setting, which fails to translate to low performance in practice. Such behavior, which 

is presented in Figure 2, hence justifies the preprocessing pipeline, feature engineering choices, 

and hyperparameters adopted in the study as a good baseline against which subsequent 

comparisons with deeper and hybrid models could be made. 
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Figure 2: Accuracy curves of the Feedforward Neural Network (FNN) model for cardiac 

arrhythmia detection, showing training accuracy and validation accuracy over successive epochs 

 

FNN Model Confusion Matrix 
Figure 3 provides the confusion matrix where the performance of the classification by the 

Feedforward Neural Network is broken down by identifying the relationship between actual and 

predicted categories. The contents of each cell in the matrix are the counts of the model assigning 

a certain predicted class to a set of observations in a given actual class. The diagonal parts represent 

a proper classification, whereas the off-diagonal parts represent an impaired classification and 

allow a clear definition of the pattern of errors. A large clustering of the values along the diagonal 

means that the FNN successfully reached a high value of classification across the represented 

classes. As shown in the matrix in this case, most of the samples in each of the classes were 

correctly classified, which shows the ability of the model to learn useful discriminative 

characteristics within the structured clinical dataset. The equality of high values along the diagonal 

across classes further indicates equitable performance, i.e., the model does not show a 

disproportionate performance towards a particular class over another, which is a general problem 

with medical datasets since they may have a class-imbalance problem. 

The comparatively small level of off-diagonal means that inaccuracy was a rare case, and most 

probably owing to similarities in the course of feature designs among some classes. In clinical 

situations, this overlap might be due to sharing physiological similarities or comorbidities in 

patients or other factors, and their classification would be less easy by nature. This makes it clear 

that adding more complementary or even architecturally combining, as proposed in the hybrid 

FNN DNN model, will be needed to decrease these confusions further. In terms of deployment, 

the matrix would be a useful diagnostic tool to know the limitations of the model. Having 

determined classes that are often misclassified, one can work to correct this deficiency in specific 

classes by using domain-specific refinements (augmentation of particular classes of features, 

increasing sampling strategies, or using loss functions optimized to that domain). All in all, Figure 

3 reveals that there is strong predictive performance overriding in the FNN as well as the scope of 

incremental improvement amidst the tendency to detect multi-class cardiac arrhythmias. 
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Figure 3: Confusion matrix of the Feedforward Neural Network (FNN) model for cardiac 

arrhythmia classification, illustrating the distribution of correct and incorrect predictions across 

target classes 

 

Deep Neural Networks (DNN) 

The performance in cardiac arrhythmia using the Deep Neural Network (DNN) is shown in Figure 

4, which demonstrates the learning curve of the overall steps of the training. The graph generates 

two curves showing the accuracy of the training, i.e., the ratio of well-classified examples in the 

training set, and the validation accuracy, i.e., the ability to predict the unseen data on the model. 

Both curves show a steep rising order during the first epochs, which reflects the fact that there is 

fast growth in the discriminative capacity of the model as it learns feature hierarchies of the input 

variables. The trends of the training and the validation curves are closely fit, and this is a very 

important sign that the model is stable and robust. This parallelism proposes that the DNN has 

successfully escaped drastic overfitting, the normal state of deep designs, especially when 

implemented on mid-sized datasets. This may be owed to their scrupulous use of regularization 

techniques such as dropout layers, batch normalization, and hyperparameter tuning, all of which 

influence the maintenance of generalizable patterns above and beyond the noise of a specific 

dataset. 

This plateau trend had been observed further along in the epoch, meaning that there was no more 

significant improvement in accuracy, as the model possessed no more than marginal improvement 

after each iteration. It is ideal to have such a stabilization because it means that the model has 
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mastered the most informative patterns provided without drifting towards the memorization of the 

training set. Any minor changes in the accuracy of validation over epochs occur within the 

expected range and are attributed to actual variance that results in minuscule changes on the 

stochastic gradient updates and min-batch sampling. About methodology, even the learning curve 

of the DNN confirms the ability of the architecture to manage the intricate and non-linear 

interactions of the structured data in clinical records. The relatively consistent results obtained on 

training and validation data suggest that it is ready to be compared with other models, such as the 

suggested hybrid, FNN DNN, which would aim to combine the advantages of the DNN's ability 

to learn features hierarchically with the effectiveness of the FNN to represent structured data. This 

value, therefore, gives a baseline benchmark in terms of the later architectural improvements. 

Figure 4: Accuracy curves of the Deep Neural Network (DNN) model for cardiac arrhythmia 

detection, showing training and validation accuracy progression over multiple epochs 

 

DNN and Hybrid Model Confusion Matrix[WU1] 

Figure 5 shows the actual confusion matrix that gives a close look at how well the Deep Neural 

Network performs based on its predictions of the correct labels to use per class when considered 

against the actual or ground truth labels. Each of the diagonal elements is the count of correctly 

classified instances per class - that is where the model is right and the sample belonged to that and 

only that particular class. The off-diagonal cells represent a misclassification opportunity where a 

sample was predicted to belong to a non-correct class, having been given that prediction by the 

model. This can be taken as an indication that the DNN was successfully able to learn and utilize 

class-specific patterns well, indicating an overall good ability to classify. 

The fact that the values of the off-diagonal cells are not very high indicates that the 

misclassification was not very common (or when it was, involved classes that had shared clinical 

or physiological features). Such overlap could occur in a medical scenario when different patients 

could have the same or nearly the same values for some important variables, and it is hard to 
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distinguish between them. This underlines the necessity of more detailed sets of features or model 

structures that can represent more detailed differences, especially in borderline cases. Among the 

brightest sides of the said matrix is the fact that it shows a comparative performance across the 

classes where none of the variables evokes some telling indicators of the disproportionality of the 

model in favor of one part or the other. This is essential in the detection of arrhythmia, where there 

are classes that can lead to dire clinical results it could not detect. Having a relatively consistent 

sensitivity over the categories is an indicator of the strength of the feature extraction process in the 

DNN, and of the success of the preprocessing and normalization steps in reducing feature 

imbalance. 

Deployment-wise, this matrix can be used as a means of refining the model through the process of 

diagnosis. There might exist classes where misclassifications are small but consistent, thus some 

specific improvement techniques might be used, e.g., using weighted loss functions to increase 

sensitivity in improperly represented classes, or including domain-dependent features. In the end, 

Figure 5 verifies that the DNN has good predictive stability, and more improvement can be 

provided by means of hybridization with other architectures. 

  
 

Figure 5: Confusion matrix of the Deep Neural Network (DNN) model for cardiac arrhythmia 

classification, depicting the distribution of correct and incorrect predictions across multiple 

classes. 

 

Hybrid Model 

Figure 5 shows the learning curve of the proposed Hybrid Feedforward Neural Network-Deep 

Neural Network (FNNDNN) architecture, where the cross-interaction between training accuracy 

versus validation accuracy is depicted after several epochs. The training accuracy curve gauges 

how well the model can accurately label the samples in the training set, whereas the validation 

accuracy curve measures the level at which the model can generalize it to new data. These curves 

move nearly in parallel during training, a good sign of well-balanced learning, indicating that the 
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hybrid model does not suffer seriously even in learning of overfitting, as is often the case in 

combining deep learning structures. 

Both the training and validation accuracies grow continuously and regularly in the initial epochs, 

which proves that the hybrid architecture can absorb the basic patterns in the data quite fast. As 

we continue training, the curves start to flatten out, indicating a convergence point at which further 

training cycles give little improvement in performance expectations. Such stabilization is 

especially helpful with medical AI applications because it represents the tendency of the model to 

maintain generalization without being too complex. Among the strengths that are depicted in this 

figure is the ability of the hybrid model to keep its validation accuracy relatively similar to its 

training accuracy. Demanding this encourages the mutually beneficial nature of the integrated 

architectures: the FNN component is good at processing structured clinical features, whereas the 

DNN layers extract more complex, non-linear relationships between variables. The outcome is a 

balanced model which accesses the best of the perceptual serves on the one hand, leaving stability 

intact. 

In methodological terms, the training dynamics presented in Figure 5 justify the rationale of the 

hybrid architecture design side. Its convergence pattern indicates that the hybrid model not only 

has the potential to learn properly on the given dataset but is also stable for the application to a 

real-world environment with various and noisy inputs. This number, therefore, supports the 

viability of accurate and scalable detection of cardiac arrhythmia in the medical field by the model. 

 

  

 
Figure 5: Accuracy curves of the Hybrid FNN–DNN model for cardiac arrhythmia detection, 

illustrating training and validation accuracy progression over successive epochs 

 

Although the suggested FNNDNN hybrid model shows great promise in the discrimination of 

early cardiac arrhythmia, there are also some limitations that have to be highlighted. First, the 
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model was trained and tested only on one publicly accessible dataset, and, as much as this dataset 

is commonly used, it does not provide the most accurate representation of real-world populations 

of patients. Model performance could be affected by the variance related to demographics, 

comorbidities, data acquisition guidelines, and equipment calibration under heterogeneous clinical 

conditions. Second, the data itself was mainly a set of structured tabular features as opposed to 

continuous ECG waveforms, thus carrying the dataset limitations in terms of offering temporal 

and morphological trends, captured through raw signal data, to the model. This would make one 

insensitive to transient arrhythmic events that are improved in a time-series format. Third, although 

preprocessing and feature engineering have reduced the problem of imbalance in the data, there 

are certain special events of arrhythmias that might still be underrepresented, thereby hindering 

the model from recalling such cases. Lastly, interpretability is not as high as it should be yet, but 

still it is greater compared to such black-box deep learning models and better than it was in the 

past, but still, improvement is needed in order to reach the levels of transparency demanded in 

medical decision support systems. 

These limitations should be overcome in the future, and a number of ways can be adopted. The 

use of the model on multi-center, multi-ethnic data should be expanded during the training to make 

the model more general and less biased. Potentially adding raw ECG signal processing to 

convolutional or attention-based layers may allow the identification of subtle temporal dynamics 

that is beyond the reach to tabular data models. The class balance should be enhanced using higher-

order data augmentation and synthetic minority oversampling methods, especially in the case of 

rare and rare yet clinically relevant arrhythmias. Further, the pattern of explainable AI frameworks 

like SHAP or LIME would fit clinicians better since it would explain individual predictions on a 

feature level. A test in a real-time application, such as a wearable device or a monitoring system 

that has a connection to the cloud, should be conducted in order to assess its latency, computation 

performance, and uninterrupted observation support. Solving these issues will make the hybrid 

FNNDNN architecture a viable system, which is interpretable and deployable in a clinical setting, 

and it could be used proactively to detect and preemptively manage some cardiac arrhythmias. 

 

Conclusion 

The novelty in the study was the introduction of a hybrid architecture in which the Feedforward 

Neural Networks (FNN) and Deep Neural Networks (DNN) were merged to provide early 

detection of cardiac arrhythmias using structured clinical data of the Heart Disease Dataset. The 

rationale behind the proposed method was to combine: the effectiveness of the FNN in processing 

structured data of the tabular type (it handles it efficiently), and the advantages of the DNN which 

allows exhaustive feature interactions of complex and non-linear dependencies. By means of a 

well-designed preprocessing pipeline, feature engineering, and hyperparameter optimization, the 

hybrid model attained an accuracy of 84.8, reaching the same performance as the standalone FNN 

and DNN models, with high generalization performance since the difference between training and 

validation accuracy was minimal. 

The assessment criteria-namely, the precision, recall, F1-score, and AUC-ROC, further affirmed 

that the model is well balanced in terms of its multiclass performances. On the confusion matrices, 

high diagonal dominance values were observed, which meant that different classes were classified 

reliably without a relatively high bias to a certain category. Such numerical findings confirm the 

strength of the hybrid architecture, as well as its prospects of usage in clinical settings. Notably, 
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the stability of the model between the training and validation makes it most likely that the 

regularization methods used, such as dropout and batch normalization methods, have proven 

successful in avoiding overfitting. Contribution-wise, the current study will further the body of 

knowledge regarding AI-driven cardiovascular diagnostics with a novel hybrid modeling 

framework enhancing the balance in trade-off between predictive performance, computational 

efficiency, and scalability. This model works well on structured clinical datasets, unlike deep 

architectures that must handle raw waveform data; hence, its application in an environment where 

it is integrated with an electronic health record (EHR) system and resource-limited health facilities. 

In addition, the modularized nature of the model lends itself toward expansion in multiple ways in 

the future, including incorporating convolutional layers to study raw ECG or explainable AI 

components to enhance transparency. In this way, the proposed hybrid FNN-DNN would be a 

streamlined and flexible path to effective, early arrhythmia detection that can help patients improve 

their situations through timely intervention and informed decision-making. 
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